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1. Introduction.

The problem of finding all minimal Markovian (state space) representations of a given

random process {y(t); t € T} is known as the stochastic realization problem, |t has been
studied extensively in recent years both in its deterministic [2,3,15] and its probabilistic
[1,4-6,9,10,12-14] aspects. In this paper we extend and unify the axiomatic state space
approaches presented in [5] and [14].

The notion of minimal splitting subspace, a generalization of a concept introduced
in [7], was applied to this problem in [9] and [5]. This is a natural approach, for, at
any given time t € T, a minimal splitting subspace X (with respect to the spaces spanned
by the past and the future of y) can be interpreted as a subspace of smallest size cqntain-
ing all the information from the past needed in predicting the future and all the informa-
tion in the future required to estimate the past, making it an obvious candidate for a
state space. A dynamical state space description will then require considering families
{Xt; t €T} of minimal splitting subspaces. However, as we shall see below, an arbitrary
such family will not in general yield a stochastic realization. For this to be the case, we
need to impose a natural growing condition.

We begin this paper by solving the general problem of finding all minimal splitting
subspaces with respect to two arbitrary subspaces. This is a geometric problem in
Hilbert space, and it contains as a special case, the splitting subspace problem of the
stochastic realization problem. Secondly we apply these results to the problem of find-

ing all Markovian representations of an arbitrary stochastic vector process.

2. Some preliminaries and notations

Let H be a Hilbert space. For two subspaces A and B of H (all subspaces are taken
to be closed), A L B means that A and B are orthogonal, A & B denotes direct sum,
A © Bis the subspace of A orthogonal to B, A V B is the closed linear hull of A and B,
and Al is the orthogonal complement of A in H. The orthogonal projection of A € H
onto A is denoted EAX or E{AJA}. Let EAB or E {BIA ) be the smallest subspace
containing EAB, i.e., the closure of EAB.

We shall write A 1 BIX if the three subspaces A, B and X satisfy the condition

(a,B) = (Exa, Exﬁ) foralla € A, BEB.
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1t can be seen that (1) is equivalent to each of the conditions
E{alBV X}=E{aX}forall c€EA
E{BIAV X}= E{BIX} forallf €B

and, if X C A, also to
A S X|B.

3. Minimal splitting subspaces
Let Hq and Hy be two arbitrary subspaces of H and define H( to be the vector sum
of these, i.e., Hg = H \% Ho.
Definition 1. A subspace X C H is asplitting subspace (with respect to Hy and Hyp) if
Hq L HolX.
A splitting subspace X is minimal if there is no proper subspace of X satisfying (5) and

internal if X C HO'

The following lemma will be useful in testing the minimality of a splitting subspace.

Lemma 1. Let X be a splitting subspace and assume that X = Xq @ X2 where X«, and X2

are subspaces of X. Then X4 is a splitting subspace if and only if
X - X
E 2H,L1E 2H,
Proof. (Cf (14].) Take A € Hq and n € Hy. Then, in view of (5),

X X
) = (EXN, EXn) = (B 10, E” Ty 4 (6520, £%2p).

; . X X
Hence, (6) is equivalent to (A,n) = (E 1)\, E 1n) for all A € Hy and n € Hy, which is the
same as Hy L Hy(Xy. =

The purpose of this section is to solve Problem P1.

(2)

(3)

(4)

(5)

(6)
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Problem P1. Find all minimal splitting subspaces.
Let us also consider the following problem.
Problem P2. Find all splitting subspaces X such that
XNHt=0 (7)
XNHyt=0 (8)

Remark 1. Using the orthogonal decomposition

A=E(BIA}e (ANBY), (9)
which holds for any subspaces A and B of H, we see that (7) and (8) are equivalent to
X =E (H4IX} ar
and
X = E {HpIX} @

respectively.
Proposition 1. Problem P1 and P2 are equivalent.

Proof. (i) Let X be a solution of P1. Using (9) we can write X = X4 @ X, where X4 = EXHI
and X5 = X N HyL. Obviously E2H, = 0, and therefore (6) holds. Hence X is a splitting
subspace (Lemma 1). Then, since X is a minimal splitting subspace, X4 = X, and thus (7)
holds. In the same way we show (8). Therefore X is a solution of P2.

(ii) Let X be a solution of P2, and let X1 be any splitting subspace contained in X. To
see that X is a solution of P1 it remains to show that X2 =X©Xy=0 Bylemma 1, (6)
holds. Now, in view of X C X and condition (7', E \2Hy = B \2E Hq = £ 2X = X,
In the same way, using (8)’, it can be shown that EX2H2 = X,, and therefore, due to (6),
Xp=0. =

From Proposition 1 we see that our main problem P1 can be replaced by the mathemati-
cally more convenient problem P2, To solve P2 we shall first study minimal splitting

subspaces satisfying one of the conditions (7) and (8), say (7).




Lemma 2. The subspace X C H is a splitting subspace satisfying (7) if and only if
X=E {H4IS} for some subspace S D Ho.

Proof. (Cf. [6].) (if): LetX = E{H,IS} where S D Hy. Then ESA = EX) for each A € H.
SinceS D Hy V X, this implies that E vy v X = EX for each \ € Hq, i.e., in view of (2),
Hq 1 HalX. Hence X is a splitting subspace satisfying (7)".
fonly if): Let X be a splitting subspace satisfying (7). Then, X = EXH1 =E gh2 ¥ X Hy,
by condition (2), and hence X = E {H{IS} with§=HVXDH, =

Then, by introducing the additional condition (8), we obtain the following theorem
which gives the solution of P1. For this we first need to define the frame space
HO = E{HqIH2}V E{HlH,), (10)
which is itself a (nonminimal) internal splitting subspace (5] .

Theorem 1. The subspace X is a minimal splitting subspace if and only if X = E {H41S}
for some subspace S such that Hy CS C (Hy VH%) @ Ho

We need the following lemma to prove this theorem.

Lemma 3. Let S D Hy. Then ES (Hy N HQY) = (ESH,) N HyL

Proot. By definition, ES (Hy nHY) = (ESx 1neH, and A LH). But AL Hy s equivalent
to E 2)\ = 0, which, in view of S D Ho, is the same as E H2 Es)\ =0orESre H2 L]

Proof of Theorem 1. In view of Lemma 2 and condition (8), it only remains to show that
S C(Hy VH?) @ Hglif and only if (ESH;) N Hyl = 0. But, by Lemma 3, the latter
condition is equivalent to S C (Hy N H )L, Now, using formula (9), it is seen that Hg =
(Hg VH") @ (Hq N Hyl), and therefore (Hy N Hol)l= (Hy VHO) @ Hyl. =

Corollary 1. The subspace X is an internal minimal splitting subspace if and only if X =
E{H,IS) for some subspace S such that Hy CS C Hp V HE,

Theorem 1 provides a parameterization of the set of minimal splitting subspaces.
We shall now show that the mapping S=X is one to one if and only if S is restricted to

Hp. in which case we obtain precisely the internal minimal splitting subspaces.

S el J



Proposition 2. Let S be a subspace such that S O Hop, and define X = E {H 11S }. Then
= (Hy V X) ® K for some subspace K C Hol. IfSCHy K=0.

Proof. Clearly S D Hp V X, and therefore S = (H, V X) @ K for some subspace K. We wiil
show that K C Hol To this end, as in the proof of Lemma 2, f:rst note that ES) = Ex)\
for each A €Hq. Since S D Hp V X, this implies that ESA=E Ha ¥ x)\ for all A€ H4, and
consequently K L Hq. Since, in addition K 1Hj (by definition), KLHy. =

4. Applications to the stochastic realization problem

Let {y(t); 1€ T} be a wide sense separable [11] centered m-dimensional Gaussian
stochastic process defined on a probability space (2, E P) and with a time set T which
is either discrete or continuous. For any (complete) sigma-field S C F, define the
Gaussian space H(S) to be the subspace of Lo(£2, F, P) consisting of all centered S~
measurable real Gaussian stochastic variables in (2, F, P) [8]. The space H( F) will
play the role of H in Section 3; it is a Hilbert space wit'h inner product (¢,7) = E{¢n),
where E{ - } denotes mathematical expection. To simplify matters, we shall write Hly)
instead of H(o {y(t); t € T}), and we shall adhere to this convention whenever Sis
induced by a random process. It is well-known [8] that H(y) = sE{yk(t); teT, k=
1,2,...,m}, where 5p{ - } signifies the closed linear hull in Lo(2, F, P).

To exploit the theory of minimal splitting subspaces developed in Section 3, we
need to define the past field Yy and future field V:' of the process y for each tE T.
Here we shall take Yy and V: to be the sigma-fields generated by {y(s);s <t}
and {y(s); s >t} respectively (take o {¢} to be {¢ ©2)), but other definitions are
possible; we may take § < t instead, and in some applications it is better to let Y¢ and
V:’ be generated by the past and future increments of y [5, 13]. Then, for each t € T,
define the past space Hy (y) and the future space H:’ (y) to be the Gaussian spaces
H(Y{) and H(V:) respectively. In the setting of Section 3 the subspaces H(y), H" ()
and H;’(y) will play the parts of Hp, H1 and Hp respectively.

Definition 2. A (Gaussian) stochastic system on (2, F,P) is a pair (x,y) of centered
(jointly Gaussian) stochastic processes {x(t); t€ T} and {y(t); t € T}, taking values

in an arbitrary real vector space E and in R™ respectively, such that, for every t€ T,

SRR SIS FO—
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the Gaussian subspacef X, generatea by the random vector x(t) satisfies

[HTty) V XT) LIHT () VXTI,

where X{ := Vs<t Xs and X: = Vs>th. The processes x and y are called the state process
and the output process respectively, and )(t is the state space at time t. The stochastic

system is finite dimensional if dimX, <eefor all tET.
Remark 2. Trivially, the family {X¢: t € T }of state spaces satisfies the conditions

(i) {X{: t € T}is Markovian, i.e. X: LXE IX¢forall tE€T. This is equivalent

to saying that {x(t); t € T} is a Markov process.
(i) for each t €T, X, is a splitting subspace with respect to H{ly) and Hy (y). ®

We shall say that two stochastic systems (defined on the same probability space)
are equivalent if, for each t €T, their output processes agree a.s. and their state spaces are
the same. Hence equiyaleni stochastic systems can have different state processes but
these are related by trivial coordinate transformations in.the state spaces.

As an example let us consider a discrete-time stochastic system with T = - i

Proposition 3. A// finite dimensional stochastic systems (x,y) with T = Z% have a

representation of type

x(t+ 1) = A(t)x(t) + B(t)w(t) ; x(0) = xq
y(t) = C(t)x(t) + D(t)w(t),

where {A(t), B(t), C(t), D(t);t€ Z+} are matrices of appropriate dimensions, Xgisa
Zero-mean Gaussian random vector, and w is a unitary Gaussian white noise process
independent of xq Conversely, any pair (x,y) of stochastic processes satisfying (12)

is a stochastic system.

Proof. (i) Let (x,y) be a stochastic system with T = Z* and the state process x taking
values in R™. We shall prove that (x,y) satisfies a representation (12). To this end first

note that

T That is, X; = H(X,), where X, is the sigma-field induced by the random vector x(t).

(11)

(12a)
(12b)




1
X eHE (IVXE (X e (VX)L (xm ) (13)
y(1) y() vy

HT (y)VXT
Now, (11) implies that E 't VX A= Ext)\ forall A € H:’(Y)VX: (property (2)), and

consequently there are matrices A(t) and C(t) such that

HT (y)vxo= [x(t+1) A(t))
gt t (y(t) = | ¢ x(t). (14)

The second term of (13) is a white noise process; it is the innovation process of [X(t+1 ))

t
By normalizing we obtain vid

[HT (VXTI [x(e) B0 ) o

= ” 5
3 v ) "\ ow ) ™ s
where w is a unitary Gaussian white noise and B(t) and D(t) are matrices such that ([B)((tt)) »

has fu!l rank. Hence (x,y) satisfies (12). It remains to show that xgd H(w). But, since D(1)
has full rank, (15) implies that w(t) € [HT (y)VX{ ]+ for all t € Z*. Hence xg L H(w).

(ii) Assume that (x,y) satisfies (12), and, for each t € Z*, let X, be the Gaussian space
generated by x(t). Sincew s a wﬁite noise process and xq L H't"(w), Xo @ Hi(w) is

orthogonal to H:(w) or equivalently
[Xg®HT (W)] L [HT (w) ® X,] X, . e

(property (4)). From (12) it is easy to see that HT (y)VX{ C Xg @ HE (w) and that
H:’(y)VX‘{ c H:’(w) @ X; and therefore (11) holds. Hence (x,y) is a stochastic system. ®

Similar results hold for continuous-time processes and stationary processes defined on

the whole real line.

Definition 3. A stochastic realization (or Markovian representation) of {y(t);t€ i} on
(2,F, P) is a stochastic system (x,z) on (§2,F, P) such that, for all t E T, z(t) = y(t) a.s.
The realization is said to be finite dimensional if the stochastic syste~m is finite dimensional

and /nternal if Xt CH(y) fort€T.

Theorem 2. Every wide sense separable centered Gaussian stochastic process {y(t); tE€ T}

has a stochastic realization on (S, ¥, P) where Y is the sigma-field generated by the process y.

Proof. Foreach tET, set X; = Hy (y). Since trivially Hi (y) 1 Hly)IHg (y), X, thus
defined, satisfies (11) for all t € T. For each t € T, choose a basis x(t) in Xt; this can be
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done due to the separabilitv. Then (x,y) is a stochastic realization on (L2, ¥, P). Of course,

we may as well set X, = Hily). =

The basic problem in realization theory is to find the smallest possible state spaces. Of .
course, in general, the choic2 in the proof of Theorem 2 will not suffice for this purpose. We
need a concept of minimality. To this end first note that the family H of all subspaces of

H( F ) is a partially ordered set with respect to vector space inclusion.

Definition 4. A stochastic realization (x,y)} on (2,F, P) is minimal at time t if the correspond-
ing state space )(t is minimal with respect to the ordering of the partially ordered set H, i.e. if
there is no smaller subspace of H( F ) for which (11) holds. We say that (x,y) is minimal

if it is minimal at each time t € T.

Proposition 4 - (Ruckebusch). A stochastic realization is minimal if and only if it is both

observable and constructible, i.e., forevery t€T,
i}
XN [Hf(y)1 =0 (observability) (17)
i i
Xy N [H;’(y)] =0 (constructability). (18)

The proof of this result is a trivial generalization of one given in [14] for the stationary
case.

Minimal splitting subspaces with respect to the past and future spaces of y are natural
candidates for state spaces in the stochastic realization problem. If we consider splitting
subspaces contained in the past space or in the future space only, the Markov property isa
direct consequence of the splitting property. In general, however, we must impose a

certain growing condition, as described in the following th2orem.

Theorem 3. A family {Xy; t € T} of separable subspaces of H(F) defines a minimal stochastic
realization (x,y) (in the sense that X, is the Gaussian space generated by x(t) for each tE€T)
if and only if
(i) for each tET, X, is a minimal splitting subspace with respect to Hy (y) and
H{ly);
(i) there exists a family {Zy; t € T} of subspaces, with the property Z, C [Hiy)VXE] "
for all t € T such that the family {S;;t €T}, where S;:= [Ht—(y)VXt] ez, is

nondecreasing, i.e. Sy C St whenever 1 < t

T TSR

T L T TRy
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Proof. (if): By Condition (i), Lemma 2, and Proposition 2, X, = E{H:’ (y)|[Ht— (y)VXt] ®K,}
where K, 1 H:’(y). Therefore, since in addition el H:(y), Koo E{H:(y)fst}. Consequently,

in view of (9),
St © Xy =S, N [HF (Y14, (19)

which is nondecreasing in t, for {S¢} and {[H't"(y)] l} are. Hence, since trivially (St e Xt) L X,
(S;e Xyl X:. By (19), we also have (S © X)L H:(y), and therefore, in view of property
(4), 8,1 [H:(y)VX'{] [Xt But, due to condition (ii), HY (y)VXt_ C§;, and consequently
(11) holds. Then, choosing a basis x(t) in X for each t € T produces the required state
process. The stochastic realization (x,y) is minimal, for {X{ t€T} is a family of minimal
splitting subspaces.

fonly if): Let (x,y) be a minimal stochastic realization with state spaces {Xy;t€ T}. Then,
Condition (i) follows from Remark 2 (ii) and, as for the minimality, from Proposition 1

and 4; note that conditions (7) - (8) and (17) - (18) are identical. To show that Condition
(ii) holds, set Z, = [H;‘ (y)VXt—] e [H{' (y)VXt] . Then Sy = HY (y)VXt_, which is non-
decreasing. It remains to show that 2, C [H(y)VX?] L 1t follows from (11), (4) and the

definition of Z, that
Zy C (HT (MVXTT L{HT(IVXT] © X, (20)
Since, in addition Z, L [Ht—(y)VXt] . g d [H(y)VX:'] as required. ®
We obtain a simpler version of this theorem by restricting our attention to internal

realizations.

Corollary 3. A family { X4 YE T} of subspaces of H(y) defines a minimal stochastic
realization of y if and only if Condition (i) of Theorem 3 holds and the family {Sy;t€ T},

where here S, := H_ (y)VX,, is nondecreasing.
t t t

Proof. (if): Noting that Hly) is separable, this part follows immediately from Theorem 3.
(only if): 1t only remains to show that Z; =0 forall t ET. But, by definition,

- ks + 1
Z,CH, (y)VXt C H(y). Therefore, in order to satisfy the condition z,C [H(y)VXt] i

we must have Zt =0. =

Comparing Corollaries 1 and 3 we can see from Proposition 2 that, in general, there

exist families of (internal) minimal splitting subspaces which do not evolve in time in a
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Markovian fashion. To see this, we may choose a family {S;;t€ T} which is not non-

decreasing.
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